
Ideas on creating random numbers

If your FPGA system has a truly asynchronous event, like a human pushing a button, you can create a
new random number every time the human presses the button. Simply create a counter continually
counting at the system clock rate (100 MHz), and every time the button is pressed, save the lower bits to
a register. Note: a 16-bit counter counting at a 100 MHz rate rolls over at around 655 micro-seconds,
which is much faster than a human can press a button.

If you need more than one random number

If your system needs several random numbers (like to initialize an array of values for a game), you can
use the single random number above as a seed to generate several pseudo-random numbers using an
algorithm such as:

 From https://www.cpp.edu/~pbsiegel/phy499w16/randnum.pdf

https://www.cpp.edu/%7Epbsiegel/phy499w16/randnum.pdf

Linear Feedback Shift Register

Here is a Psuedo-Random Number generator (by Nate Bean), using a Linear Feedback Shift Register

entity randomNum is
 Port (clk: in STD_LOGIC;
 reset_n : in STD_LOGIC;
 rand : out std_logic_vector(7 downto 0)
);
end randomNum;

architecture Behavioral of randomNum is

signal curNum, nextNum: std_logic_vector(7 downto 0);
signal feedback: std_logic;

begin

process (clk)
 begin
 if (rising_edge(clk)) then
 if reset_n = '0' then
 curNum <= "00000001";
 else
 curNum <= nextNum;
 end if;
 end if;
end process;

feedback <= curNum(4) XOR curNum(3) XOR curNum(2) XOR curNum(0);
nextNum <= feedback & curNum(7 downto 1);

rand <= curNum;

end Behavioral;

