Ideas on creating random numbers

If your FPGA system has a truly asynchronous event, like a human pushing a button, you can create a
new random number every time the human presses the button. Simply create a counter continually
counting at the system clock rate (100 MHz), and every time the button is pressed, save the lower bits to
a register. Note: a 16-bit counter counting at a 100 MHz rate rolls over at around 655 micro-seconds,
which is much faster than a human can press a button.

If you need more than one random number

If your system needs several random numbers (like to initialize an array of values for a game), you can
use the single random number above as a seed to generate several pseudo-random numbers using an
algorithm such as:

From https://www.cpp.edu/~pbsiegel/phy499w16/randnum.pdf

A Simple Pseudo Random Number algorithm

If you want to make your own pseudo-random numbers, a simple algorithm that
will generate a sequence of integers between (0 and m is:

ZTps1 = (ax, + b) mod(m) (1)

where a and b are constant integers. A sequence of integers x; is produced by this
algorithm. Since all the integers, xr;, generated are less than m, the sequence will
eventually repeat. To have the period for repeating to be as large as possible, we
want to chose m to be as large as possible. If m is very large, there is no guarantee
that all integers less than m will be included in the sequence, nor is there a guarantee
that the integers in the sequence will be uniformly distributed between 0 and m.
However, for large m both these two properties are nearly satisfied and the algorithm
works fairly well as a pseudo-random number generator.

For a 32-bit machine, a good choice of values are a = 7°, b= 0, and m = 2% — 1,
which is a Mersenne prime number. The series of numbers produced is fairly equally
distributed between 1 and m. Usually, one does not need to make up one’s own
pseudo-random number generator. Most C compilers have one built in.

https://www.cpp.edu/%7Epbsiegel/phy499w16/randnum.pdf

Linear Feedback Shift Register

Here is a Psuedo-Random Number generator (by Nate Bean), using a Linear Feedback Shift Register

entity randomNum is
Port (clk: in STD_LOGIC;
reset_n:in STD_LOGIC;
rand : out std_logic_vector(7 downto 0)
);

end randomNum;
architecture Behavioral of randomNum is

signal curNum, nextNum: std_logic_vector(7 downto 0);
signal feedback: std_logic;

begin

process (clk)
begin
if (rising_edge(clk)) then
if reset_n="0"then
curNum <= "00000001";
else
curNum <= nextNum;
end if;
end if;
end process;

feedback <= curNum(4) XOR curNum(3) XOR curNum(2) XOR curNum(0);
nextNum <= feedback & curNum(7 downto 1);
rand <= curNum;

end Behavioral;

