

These instructions are a combination of “MicroBlaze_Install_Short_Version”
and “Lec19_Install_Short_Version”, tailored for lab3.

==
1. Creating New Project
1.1) Click on Create New Project (i.e,. Lab3)
 Be sure there are no spaces in the folder name or path

(i.e., don’t use “Lab 3”, but instead use “Lab3”)
Otherwise, the tool chain will crash later on.
and click Next.

1.2) Choose Project Type as RTL Project. Leave the “Do not specify sources…” box unchecked and click
Next. On the Add Sources screen, don’t add sources, but ensure the Target Language and Simulator
Language are both VHDL, not Verilog. Next. Don’t add constraints. Next
1.3) select Nexys Video board. Next.
1.4) A summary of the new project design sources and target device is displayed. Click Finish.

2. Creating New Block Design
2.2) On the left you should see the Flow Navigator. Select Create Block Design under the IP Integrator.
Keep the name as design_1, click OK.
2.3) Click the Add IP button (plus sign). Search for “Microblaze” and double click on it to add the IP
block to your empty design.

3. Adding Microblaze IP and Customization
3.1) click Run Block Automation
3.3) Change default settings in the block options
 - Local Memory = 32KB
 - Cache Configuration = 16KB
 - Interrupt Controller = Do not check
and click OK.

4. Customization of Clock Wizard IP Block
4.1) Double click on the Clock Wizard, clk_wiz_1, IP block.
4.2) Choose sys clock for CLK_IN1.
 Choose reset for EXT_RESET_IN.
4.3) Select the Output Clocks tab.
4.4) Check the box next to clk_out2, then select clk_out2 output frequency as 200.000 (Mhz) and set
Reset Type as Active Low. (scroll to bottom of window)
4.5) click OK to finish block automation of Clock Wizard.

5. Adding UART IP Block
5.1) Go to Add IP (plus sign) and search for “UART”. Select the AXI Uartlite IP block.

6. Running Connection Automation for the First Time
6.1) Now select the Run Connection Automation from the Designer Assistance bar message prompt.
Select axi_uartlite_0, clk_wiz_1, and rst_clk_wiz_1_100M. Do NOT select microblaze_0.

7. Adding and Customizing Memory Interface Generator IP Block
7.1) Click Add IP (plus sign) and search for “Memory Interface Generator”, then double click the result.
7.2) click Run Block Automation. Click OK.
7.4) If you see this one error message [BD 41-1273]. You can ignore this. Click OK to dismiss this. If you
have more than one error message, redo. Delete the MIG block from the schematic, and redo step 7.
Sometimes several MIG errors occur when the path name for your repo is too long. In this case, move
your repo to a higher level directory.

8. Running Connection Automation for the Second Time
8.1) Now click on Run Connection Automation
8.2) Select only the mig_7series_0 in the connection automation list.
 - click on sys_clk_i and change clock source to clock_out2 200MHz.
 Do not select Microblaze_0 section.
Click OK.

10. Make DDR3 Signal External
10.1) The MIG block should be named mig_7series_0. Place your cursor on this symbol || next to the
DDR3+ port name. Your cursor will change to look like a pencil. Right click here and in the drop down list
select Make External

11. Validate Design
11.1) Select Validate Design (check box symbol or F6).
If you get an error message, see the original tutorial.
11.2) Success? Click OK.

From “Lec19_Install_Short_Version”

1. Open your Lab3 Vivado project (if not already opened)
Go to Tools → Create and package IP next

2. Create your custom IP project
2.1) Select Create a new AXI4 peripheral and click Next
2.2) Input “My_Lab2” and click Next
2.3) Change the number of Registers to 32 on the AXI interface and click Next
2.4) Select Edit IP and click Finish

3. Designing the IP core
3.1) A new instance of Vivado will open up for the new IP core. Expand the top level
file My_Lab2_IP_v1_0 to see My_Lab2_IP_v1_0_S00_AXI

6. Modify My_Lab2_IP_v1_0.vhd
5.1) add Lines 19, 59, 93 as needed, similar as you did in HW#10, adding ports for all the signals that
need to go to your lab2.xdc ports

5.2) Looking at the lab3 block diagram, you’ll see that the “ready” bit (or FlagQ) will need to pushed out
to a higher level for the interrupt, similar to the 3 lines you added in HW#11 for “roll”

5. Modify My_Lab2_IP_v1_0_S00_AXI.vhd
Similar to HW#10 and HW#11, you will need to add all the slv_regs you are mapping to your lab2 ports.
 Add Lines 20 (add lab2.xdc ports, plus a similar line for ready/flaqQ),
 Add lines 112-122, (put ready/flagQ in entity).
 Also add needed signal wires (usually for lab2 ports microblaze will want to read on slv_regs.)
 Near line 671, connect the lab2 ports microblaze will want to read on slv_regs, similar to what you
 did for HW#10, for example,

 case loc_addr is
 when b"00000" =>
 reg_data_out <= X"000000" & std_logic_vector(Q);
 when b"00001" =>
 reg_data_out <= slv_reg1; -- keep as is

 Add lines like 759-766 in HW#10, instantiating lab2 datapath, and hooking up the microblaze
slv_reg for it to write to
 May need CSA statements to hook lab2 datapath signals, like clearFlag to the appropriate bit of a
slv_reg, or to hook top level ready to flagQ

4. Add Lab2 files to the My_Lab2_IP_v1_0
4.1) “Add Sources” lab2_dp.vhd file [and many more files supporting lab2]

 You will need to recreate clk_wiz_0 and clk_wiz_1 (from lab#2)… Select “Global” synthesis option
when “generating”

7. Packaging the IP core
7.0) Now click on Package IP in the Flow Navigator and you should see the Package IP tab.
7.1) Select Compatibility (under Packaging Steps) and make sure “Artix7” are present. If those are not
there, you can add them by clicking the plus button. The Life Cycle does not matter at this point.
7.2) Select Customization Parameters and select the line for Merge Changes from Customization
Parameters Wizard.
7.3) Select Customization GUI. This is where we get to change our graphical interface. No changes at
this time.
7.3) Select File Groups.

For Lab#3, you need to move synthesis files from advanced to standard (so can compile mixed
vhdl and Verilog…)

 Your .vhd and .v files are probably inside Advanced->Synthesis

 Click “+” and select Standard->Synthesis to create this new File Group

 Open Advanced->Synthesis and select all these files and drag them into Standard-
>Synthesis

 Then delete the files inside Advanced->Synthesis

 If in the line for Standard->Synthesis the Model Name does not say the name of your IP
(such as My_Lab2_v1_0), then type your IP name in this square

 and when done, select the line for Merge Changes...
7.4) select Review and Package and click the Re-package IP button.

7.5) A popup will ask if you want to close the project, Select Yes.

8. Add Custom IP to your design
8.1) In the project manager page of the original window, click Open Block Design.
8.2) Use the Add IP (plus sign) button to add your My_Lab2 IP you just created

8.3) Find your My_Lab2_ip_v1.0 block in the circuit diagram. Right click on output pins (like LEDs in
HW#10, which should be your lab2.xdc signals) and select Make External
8.4) Notice the ready/flagQ signal is exposed. We need to manually connect it to MicroBlaze interrupt
pin.
- Click the ‘+’ sign by the MicroBlaze Interrupt, and it will expand to 3 pins
- Click on the My_Lab2’s Ready/FlagQ Signal and drag to the MicroBlaze’s Interrupt pin and release.
8.5) run Connection Automation
8.5) Now you need to add a constraints file to add the LED net to the pins on the Artix 7 chip by adding
the constraints Lab2.xdc file. (Ensure the names of the output pins match the diagram… Mine were
called xxxxx_0. For Lab#3, almost all the xdc signals needed “_0” added)
 Add sources add or create constraints Lab3.xdc

10. Verify Addressing Design
10.1) Click the Address Editor tab (next to Diagram tab)
10.2) Verify the addresses and range for the components match that of slide#15
 Uart is at 0x4060_0000; my_counter is at 0x44A0_0000

11. Validate Design
11.1) Select Validate Design (check box symbol or F6).

12. Creating or Regenerate the HDL System Wrapper
12.1) right click on design_1 and select Create HDL Wrapper.
Let Vivado manage the wrapper.

13. Generating Bit File
13.1) In the Flow Navigator panel on the left, under Program and Debug select the Generate
Bitstream option.
13.3) After the bitstream has been generated, a message prompt will pop-up on the screen. You don't
have to open the Implemented Design for this demo. Just click on Cancel.
[Note: one MIG error [BD 41-1273] is okay]

14. Exporting Hardware Design to SDK
14.1) On the top left corner of the window, from the tool bar click on File and select Export Hardware.
Make sure the generated bitstream is included by checking the box.

15. Launching SDK
15.1) Go to File and select Launch SDK and click OK.

17. Creating New Application Project in SDK
17.1) Go to File in the main tool bar and select New Application Project.
Project Name = Lab3
Create New under Board Support Package.
Click Next.

18. Selecting Hello World Application from available templates
18.1) Select Hello World under Available Templates on the left panel and click Finish.

18.2) Lab3 is our main working source folder.
18.3) Replace with our C-code (similar to lec19.c)
 - I just opened hello_world.c and cut-n-pasted the code from lec19.c over the code in
hello_world.c, and then modified this to create my lab3.c code.

19. Verify Linker Script File for Memory Region Mapping & Stack/Heap
19.0) Double click on the lscript.ld to open.
19.1) In the linker script, take a look at the Section to Memory Region Mapping box. If you did the Make
DDR3 External step then the target memory region must read mig_7series_0. Scroll down to check if
this applies to all rows. If for any region it does not say mig_7series_0, then click on the row under the
Memory Region column and select mig_7series_0.
19.2) My stack size = 0x400 and Heap size = 0x800 [we made need to increase this when our C
program gets larger]
19.3) microblaze…bram… size = 0x7FB0

20. Programming FPGA with Bit File
20.1) Make sure that the Nexys Video board is turned on and connected to the host PC with the provided
micro USB cable. Then click on the Program FPGA button to open the Program FPGA window. Make
sure that the Hardware Platform is selected as design_1_wrapper_hw_platform_0.
In the software configuration box, under ELF File to Initialize in Block RAM () column, the row option must
read bootloop. If not, click on the row and select bootloop.
Now click on Program.

21. Run Configuration Settings for STDIO Connection
21.1) From the Project Explorer panel, right click on the Lab3 project folder. At the bottom of the drop
down list, select Run As and then select Run Configurations.

The Run Configurations window is divided into two main sections. In the left panel, click on Xilinx C/C++
application(GDB) and then select Lab3.elf. Note: In case you see Lab3 Debug instead of lab3.elf in this
step, you can still run it without any issues.

Now click on Apply and Run.

22. Use Tera Term Terminal Emulator

Note: SDK appears to no longer support UART messages in its console, so we will need to use an
external terminal emulator like Tera Term. http://en.wikipedia.org/wiki/Tera_Term
(http://en.wikipedia.org/wiki/Tera_Term) to know what Tera Term is. You can download and install Tera
Term from this link http://ttssh2.sourceforge.jp/index.html.en

Establish a serial connection with the correct communication port inside Tera Term. Tera Term may find
your COM port your USB is using automatically. If not you can find the COM port your USB is using my
going to windows Device Manager and clicking on Ports (COM & LPT). Mine is sometimes COM3 and

sometimes COM5. Typically the settings will be 8 Data Bits, No Parity Bit, 1 Stop Bit.

23.1) “Welcome to Lab3” will be displayed on the Console tab
Type “?” to see list of commands

If the ISR is working, every time the counter rolls over, the isr count should increase.

http://en.wikipedia.org/wiki/Tera_Term
http://ttssh2.sourceforge.jp/index.html.en

