

See the given code at the top of
https://georgeyork.github.io/ECE383_web/lecture/lecture18.html
I’ll refer to these as the “ninja” version.

0. Do Steps 1 to 11 of MicroBlaze_Install_Short_Version

Or, just open your lecture_17 vivado project and “Save As” an new project named
Lecture_18

1. Open your Lecture_18 Vivado project

Go to Tools → Create and package IP next

2. Create your custom IP project
2.1) Select Create a new AXI4 peripheral and click Next
2.2) Input “My_Counter_IP” in the name field and click Next
2.3) Change the number of Registers to 32 on the AXI interface and click Next
2.4) Select Edit IP and click Finish

3. Designing the IP core
3.1) A new instance of Vivado will open up for the new IP core. Expand the top level
file My_Counter_IP_v1_0. Then double-click on My_Counter_IP_v1_0_S00_AXI to open it in the editor.

5. Modify My_Counter_IP_v1_0_S00_AXI.vhd
5.1) Add Lines 20, 112-122, 671, 759-766 from the Ninja file to this Vivado file
5.2) Try to understand what these lines of code do by going through the powerpoint slides and handout
for this lesson (like slides 14-31)

6. Modify My_Counter_IP_v1_0.vhd
5.1) Add Lines 19, 59, 93 from the Ninja file to this Vivado file
5.2) Try to understand what these lines of code do by going through the powerpoint slides and handout
for this lesson

4. Add the Lec 10 Counter to the My_Counter_IP_v1_0
4.1) “Add Sources” lec18.vhd file
4.2) Try to understand what these lines of code do by going through the powerpoint slides and handout
for this lesson

7. Packaging the IP core
7.0) Now click on Package IP in the Flow Navigator and you should see the Package IP tab.
7.1) Select Compatibility (under Packaging Steps) and make sure “Artix7” are present. If those are not
there, you can add them by clicking the plus button. The Life Cycle does not matter at this point.
7.2) Select Customization Parameters and select the line for Merge Changes from Customization
Parameters Wizard.
7.3) Select Customization GUI. This is where we get to change our graphical interface. No changes at
this time.

https://georgeyork.github.io/ECE383_web/lecture/lecture18.html

7.3) Select File Groups. and select the line for Merge Changes...
7.4) select Review and Package and click the Re-package IP button.
7.5) A popup will ask if you want to close the project, Select Yes.

8. Add Custom IP to your design
8.1) In the project manager page of the original window, click Open Block Design.
8.2) Use the Add IP (plus sign) button to add your my_counter IP you just created
8.3) Find your my_counter_ip_v1.0 block in the circuit diagram. Right click on output pin LEDs and
select Make External and then run Connection Automation
8.5) Now you need to add a constraints file to add the LED net to the pins on the Artix 7 chip by adding
the the constraints Lec18.xdc file. (Ensure the names of the output pins match the block diagram… Mine
were called LED_0, different than the example Lec18.xdc file)
 Add sources add or create constraints Lec18.xdc

[Note: later when you do HW#10, you will need to modify this Custom IP
counter… insert step 24 at the end of this file here then… you can skip this
for now]

10. Verify Addressing Design
10.1) Click the Address Editor tab (next to Diagram tab)
10.2) Verify the addresses for the components match that of slide#47
 Uart is at 0x4060_0000; my_counter is at 0x44A0_0000

11. Validate Design
11.1) Select Validate Design (check box symbol or F6).

12. Creating or Regenerate the HDL System Wrapper
12.1) right click on design_1 and select Create HDL Wrapper.
Let Vivado manage the wrapper.

13. Generating Bit File
13.1) In the Flow Navigator panel on the left, under Program and Debug select the Generate
Bitstream option.
13.3) After the bitstream has been generated, a message prompt will pop-up on the screen. You don't
have to open the Implemented Design for this demo. Just click on Cancel.
[Note: one MIG error [BD 41-1273] is okay]

14. Exporting Hardware Design to SDK
14.1) On the top left corner of the window, from the tool bar click on File and select Export Hardware.
Make sure the generated bitstream is included by checking the box.

15. Launching SDK
15.1) Go to File and select Launch SDK and click OK.

17. Creating New Application Project in SDK
17.1) Go to File in the main tool bar and select New Application Project.
Project Name = Lecture_18_counter
Create New under Board Support Package.
Click Next.

18. Selecting Hello World Application from available templates
18.1) Select Hello World under Available Templates on the left panel and click Finish.
18.2) Lecture_18_counter is our main working source folder.
18.3) Replace with our C-code from lec18.c
 - I just opened hello_world.c and cut-n-pasted the code from lec18.c over the code in
hello_world.c
 - Or you can follow the instructions in the powerpoint slides for a different method.
18.4) Try to understand what these lines of code do by going through the powerpoint slides and
handout for this lesson (like slides 55-62)

19. Verify Linker Script File for Memory Region Mapping & Stack/Heap
19.0) Double click on the lscript.ld to open.
19.1) In the linker script, take a look at the Section to Memory Region Mapping box. If you did the Make
DDR3 External step then the target memory region must read mig_7series_0. Scroll down to check if
this applies to all rows. If for any region it does not say mig_7series_0, then click on the row under the
Memory Region column and select mig_7series_0.
19.2) My stack size = 0x400 and Heap size = 0x800 [we made need to increase this when our C
program gets larger]
19.3) microblaze…bram… size = 0x7FB0

20. Programming FPGA with Bit File
20.1) Make sure that the Nexys Video board is turned on and connected to the host PC with the provided
micro USB cable. Then click on the Program FPGA button to open the Program FPGA window. Make
sure that the Hardware Platform is selected as design_1_wrapper_hw_platform_0.
[Note: if you did “save as” in Step 0, this may now be design_1_wrapper_hw_platform_1]
In the software configuration box, under ELF File to Initialize in Block RAM () column, the row option must
read bootloop. If not, click on the row and select bootloop.
Now click on Program.

21. Run Configuration
21.1) From the Project Explorer panel, right click on the lecture18_counter project folder. At the bottom
of the drop down list, select Run As and then select Run Configurations.

The Run Configurations window is divided into two main sections. In the left panel, click on Xilinx C/C++
application(GDB) and then select lecture18_counter.elf. Note: In case you see lecture18_counter
Debug instead of lecture18_counter.elf in this step, you can still run it without any issues.
[Note: if you did “save as” in Step 0, you may not see lecture18_counter.elf as an option. Double Click
Xilinx C/C++ application(GDB) and it should appear.]

Now click on Apply and Run.

22. Use Tera Term Terminal Emulator

Note: SDK appears to no longer support UART messages in its console, so we will need to use an
external terminal emulator like Tera Term. http://en.wikipedia.org/wiki/Tera_Term
(http://en.wikipedia.org/wiki/Tera_Term) to know what Tera Term is. You can download and install Tera
Term from this link http://ttssh2.sourceforge.jp/index.html.en

Establish a serial connection with the correct communication port inside Tera Term. Tera Term may find
your COM port your USB is using automatically. If not you can find the COM port your USB is using my

http://en.wikipedia.org/wiki/Tera_Term
http://ttssh2.sourceforge.jp/index.html.en

going to windows Device Manager and clicking on Ports (COM & LPT). Mine is sometimes COM3 and
sometimes COM5. Typically the settings will be 8 Data Bits, No Parity Bit, 1 Stop Bit.

23.1) “Welcome to Lecture 18” will be displayed on the Console tab
Type “?” to see list of commands to control the counter and LEDs

Now go and try to add the “roll” signal for HW#10. You’ll need to modify your Counter Custom IP,
adding these steps (insert after step 8 above)

24. Updating Custom IP

24.0) Go back to your project in Vivado, click Open Block Design
24.1) Right click on My_Counter_IP_1.0 block in the circuit diagram, and click Edit in IP Packager if you
want to modify! (like adding “roll”)
24.2) Make changes to appropriate files, such as My_Counter_IP_v1_0_S00_AXI.vhd and lec18.vhd
[see hints below]
24.3) Now that you updated the core you need to re-select Review and Package and click the Re-
package. [same as steps 7.0, 7.4, 7.5 above]
24.4) Now back in Vivado design_1, a yellow bar on the top of the Block Design – Design_1 window
should have a blue link titled Show IP Status. Click this link.
24.5) select your my_counter_ip_0 block in the circuit diagram, and then click upgrade selected (box at
the bottom of the screen) ok Generate
24.6) resume with step 10.

[Note: For HW#10, you’ll also need to make changes to the C code to interface with the “roll” signal]

Hints on HW#10
First understand the Lecture 18 block diagram with the roll signal.

lec18.vhd
-- entity will need “roll” signal added
-- architecture will need to set “roll” to ‘1’ when Q is the maxCount.
 Since the counter size is Generic based on size N, to create maxCount, I added….
 signal maxCount: unsigned (N-1 downto 0);
 and CSA…
 maxCount <= (others => '1');

My_Counter_IP_v1_0_S00_AXI.vhd
-- need to update counter’s entity with new roll signal… (around line 116)
-- need an internal wire signal created to hook up to roll… I called this roll_sig (around line 122)
-- your microblaze will be reading “roll”, not writing to it. Your current design reads “Q” vector on
slv_reg0, so you need to modify this to read “roll” bit on slv_reg2. So in the last line below, slv_reg2 will
need to be replaced with a way to read roll_sig.
 (near lines 673-679)
 case loc_addr is
 when b"00000" =>
 reg_data_out <= X"000000" & std_logic_vector(Q);
 when b"00001" =>

 reg_data_out <= slv_reg1;
 when b"00010" =>
 reg_data_out <= slv_reg2; -- here is where we hook up roll_sig
-- need to update counter’s entity where it is instantiated, with new roll signal… (around line 767), and
connect “roll” to roll_sig

HelloWorld.c or Lec18.c or main.c
-- the register location for “roll” is defined for you
#define countRollReg 0x44a00008 // 1 LSBs of slv_reg2 for roll

-- need to add code to read the roll countRollReg register. Could add it as a printf under the “?”
command similar to reading the Q count value:
printf(" count Q = %x\r\n",Xil_In16(countQReg));

Since “c”, or count up, tends to count up by 0x26, it is hard to hit the count of xFF directly, so you can
see roll = 1. Here are two example cases you could add to your C code which might be helpful:
 -- add a command choices under “?”

printf("m: max out counter\r\n");

 -- case max out the counter, method 1
 /* This increments the counter until the roll signal goes high. */

case 'm':
while(!Xil_In16(countRollReg)){

Xil_Out8(countCtrlReg,count_COUNT);
Xil_Out8(countCtrlReg,count_HOLD);

}
break;

 -- case max out the counter, method 2

/* or have the counter stop when the counter reaches 0xFF to
examine the roll signal */
case 'm':

while(Xil_In16(countQReg) != 0xff){
Xil_Out8(countCtrlReg,count_COUNT);
Xil_Out8(countCtrlReg,count_HOLD);

}
break;

See other hints in the HW#10 assignment

