
 
See the given code at the top of  
https://georgeyork.github.io/ECE383_web/lecture/lecture19.html 
I’ll refer to these as the “ninja” version. 
 
0. Do Steps 1 to 11 of MicroBlaze_Install_Short_Version to create 
Lecture_19 project 
           EXCEPTION: In step 3.3, do NOT check Interrupt Controller  !!!! 
 
1. Open your Lecture_19 Vivado project 

Go to Tools → Create and package IP  next 
 
2. Create your custom IP project 
2.1) Select Create a new AXI4 peripheral and click Next 
2.2) Input “My_Counter_IP” in the name field, change version to 2.0, and click Next 
2.3) Change the number of Registers to 32 on the AXI interface and click Next 
2.4) Select Edit IP and click Finish 
 
3. Designing the IP core 
3.1) A new instance of Vivado will open up for the new IP core. Expand the top level 
file My_Counter_IP_v2_0 to see My_Counter_IP_v2_0_S00_AXI 
 
 
6. Modify My_Counter_IP_v2_0.vhd 
5.1) Add Lines 19, 59, 93 from the lec 18 Ninja files to this Vivado file 
5.2) Looking at today’s block diagram, you’ll see that the “roll” bit will need to pushed out to a higher 
level for the interrupt, similar to the LED vector. So you will add 3 lines similar to 5.1 for “roll” 
 

5. Modify My_Counter_IP_v2_0_S00_AXI.vhd  
Looking at today’s block diagram, you need to add a one-bit Q register, with the flagQ bit  (read on 
slv_reg2), clear bit (write on slv_reg3), and set bit (hooked to roll from the counter) 
5.1) from the lec 18 Ninja files to this Vivado file… 
        Add Lines 20 (plus add a similar line for roll),  
        Add lines 112-122, (put roll in entity). I also added signal wires setFlag, clearFlag, flagQ 
        Near line 671,  

     case loc_addr is 
       when b"00000" => 
         reg_data_out <= X"000000" & std_logic_vector(Q);  -- need this 
       when b"00001" => 
         reg_data_out <= slv_reg1;  -- keep as is 
       when b"00010" => 
         reg_data_out <= slv_reg2;  -- need to change this to reading the flagQ bit 
       when b"00011" => 
         reg_data_out <= slv_reg3; -- keep as is… the clear flag will be written on slv_reg3 

         Add lines 759-766 (plus add “roll” in port map…   roll => setFlag) 

https://georgeyork.github.io/ECE383_web/lecture/lecture19.html


         Need a CSA line to hook clearFlag to the appropriate bit of slv_reg 
      Need a process statement to make the one-bit flagQ register 
 It’s clock will be S_AXI_ACLK.  Its synchronous reset will be S_AXI_ARESETN 
              Logic for setting flaqQ?  (only change on rising edge of clock) 

Reset or clearFlag should make it ‘0’ 
setFlag should make it a ‘1’ 
otherwise, flagQ <= flagQ 

      Need a CSA line to hook top level roll to flagQ    
      [so the lower counter roll pin will set flaqQ, which inturn is connected to the top level roll, which will    
       cause an interrupt in the microblaze] 
 
 
4. Add the Counter to the My_Counter_IP_v2_0 
4.1) “Add Sources”  lec18.vhd file  [add the version you created for HW#10 with the roll signal] 
    
          For Lab#3, you will need to recreate clk_wiz_0 and clk_wiz_1 (from lab#2)… Select “Global” 
synthesis option when “generating” 
 
7. Packaging the IP core 
7.0) Now click on Package IP in the Flow Navigator and you should see the Package IP tab.  
7.1) Select Compatibility (under Packaging Steps) and make sure “Artix7” are present. If those are not 
there, you can add them by clicking the plus button. The Life Cycle does not matter at this point. 
7.2) Select Customization Parameters and select the line for Merge Changes from Customization 
Parameters Wizard.  
7.3) Select Customization GUI. This is were we get to change our graphical interface.  No changes at this 
time. 
7.3) Select File Groups. and select the line for Merge Changes... 

For Lab#3, you need to move synthesis files from advanced to standard (so can compile mixed 
vhdl and Verilog…)     

• Your .vhd and .v files are probably inside Advanced->Synthesis 
• Click “+” and select Standard->Synthesis to create this new File Group 
• Open Advanced->Synthesis and select all these files and drag them into Standard-

>Synthesis 
• Then delete the files inside Advanced->Synthesis 
• If in the line for Standard->Synthesis the Model Name does not say the name of your IP 

(such as Oscope_v1_0), then type your IP name in this square 
7.4) select Review and Package and click the Re-package IP button. 
7.5) A popup will ask if you want to close the project, Select Yes. 
                
8. Add Custom IP to your design 
8.1) In the project manager page of the original window, click Open Block Design.  
8.2) Use the  Add IP (plus sign)  button to add your my_counter IP you just created 
8.3) Find your my_counter_ip_v2.0 block in the circuit diagram.  Right click on output pin LEDs and 
select Make External  
8.4) Notice the roll signal is exposed.  We need to manually connect it to MicroBlaze interrupt pin. 
- Click the ‘+’ sign by the MicroBlaze Interrupt, and it will expand to 3 pins 
- Click on the counter’s Roll Signal and drag to the MicroBlaze’s Interrupt pin and release. 
8.5) run Connection Automation 



8.5) Now you need to add a constraints file to add the LED net to the pins on the Artix 7 chip by adding 
the the constraints Lec18.xdc file.  (Ensure the names of the output pins match the diagram… Mine were 
called LED_0.     For Lab#3, almost all the xdc signals needed “_0” added) 
                      Add sources  add or create constraints   Lec18.xdc 
 
10. Verify Addressing Design 
10.1) Click the Address Editor tab (next to Diagram tab) 
10.2) Verify the addresses and range for the components match that of slide#15 
 Uart is at 0x4060_0000; my_counter is at 0x44A0_0000  
 
11. Validate Design 
11.1) Select Validate Design (check box symbol or F6).  
 
12. Creating or Regenerate the HDL System Wrapper 
12.1) right click on design_1 and select Create HDL Wrapper. 
Let Vivado manage the wrapper. 
 
13. Generating Bit File 
13.1) In the Flow Navigator panel on the left, under Program and Debug select the Generate 
Bitstream option.  
13.3) After the bitstream has been generated, a message prompt will pop-up on the screen. You don't 
have to open the Implemented Design for this demo. Just click on Cancel. 
[Note: one MIG error [BD 41-1273] is okay] 
 
14. Exporting Hardware Design to SDK 
14.1) On the top left corner of the window, from the tool bar click on File and select Export Hardware. 
Make sure the generated bitstream is included by checking the box. 
 
15. Launching SDK 
15.1) Go to File and select Launch SDK and click OK.  
 
17. Creating New Application Project in SDK 
17.1) Go to File in the main tool bar and select New  Application Project.  
Project Name = Lecture_19_counter 
Create New under Board Support Package.  
Click Next. 
 
18. Selecting Hello World Application from available templates 
18.1) Select Hello World under Available Templates on the left panel and click Finish. 
18.2) Lecture_19_counter is our main working source folder.  
18.3) Replace with our C-code from lec19.c 
 - I just opened hello_world.c and cut-n-pasted the code from lec19.c over the code in 
hello_world.c 
 
19. Verify Linker Script File for Memory Region Mapping & Stack/Heap 
19.0) Double click on the lscript.ld to open. 
19.1) In the linker script, take a look at the Section to Memory Region Mapping box. If you did the Make 
DDR3 External step then the target memory region must read mig_7series_0. Scroll down to check if 
this applies to all rows. If for any region it does not say mig_7series_0, then click on the row under the 
Memory Region column and select mig_7series_0. 



19.2) My stack size = 0x400 and Heap size = 0x800  [we made need to increase this when our C 
program gets larger] 
19.3) microblaze…bram… size = 0x7FB0 
 
20. Programming FPGA with Bit File 
20.1) Make sure that the Nexys Video board is turned on and connected to the host PC with the provided 
micro USB cable. Then click on the Program FPGA button to open the Program FPGA window. Make 
sure that the Hardware Platform is selected as design_1_wrapper_hw_platform_0. 
In the software configuration box, under ELF File to Initialize in Block RAM () column, the row option must 
read bootloop. If not, click on the row and select bootloop. 
Now click on Program. 
 
21. Run Configuration Settings for STDIO Connection 
21.1) From the Project Explorer panel, right click on the lecture19_counter project folder. At the bottom 
of the drop down list, select Run As and then select Run Configurations. 
 
The Run Configurations window is divided into two main sections. In the left panel, click on Xilinx C/C++ 
application(GDB) and then select lecture19_counter.elf. Note: In case you see lecture18_counter 
Debug instead of lecture18_counter.elf in this step, you can still run it without any issues.  
 
Now click on Apply and Run. 
 
22. Use Tera Term Terminal Emulator 
 
Note: SDK appears to no longer support UART messages in its console, so we will need to use an 
external terminal emulator like Tera Term. http://en.wikipedia.org/wiki/Tera_Term 
(http://en.wikipedia.org/wiki/Tera_Term) to know what Tera Term is. You can download and install Tera 
Term from this link http://ttssh2.sourceforge.jp/index.html.en 
 
Establish a serial connection with the correct communication port inside Tera Term. Tera Term may find 
your COM port your USB is using automatically. If not you can find the COM port your USB is using my 
going to windows Device Manager and clicking on Ports (COM & LPT). Mine is sometimes COM3 and 
sometimes COM5. Typically the settings will be 8 Data Bits, No Parity Bit, 1 Stop Bit. 
 

23.1) “Welcome to Lecture 19” will be displayed on the Console tab 
Type “?” to see list of commands to control the counter and LEDs 
 
If the ISR is working, every time the counter rolls over, the isr count should increase. 
 
 

http://en.wikipedia.org/wiki/Tera_Term
http://ttssh2.sourceforge.jp/index.html.en

