Mod-10 Counter state table· The first line tells us that only a positive clock edge will result in an increment. Any other condition results in the next state of Q (denoted Q+) being unchanged (equal to Q).
· [bookmark: _GoBack]The second line defines the behavior when the reset is active low (to agree with the active-low reset on the Nexys Video board).
· The third row tells us that the counter will hold when the 2-bit control is equal to 00.
· The fourth row tells us that the counter will count up when the 2-bit control is equal to 01. The "mod 10" means that the counter is supposed to count from 0 to 9 and then, on the next count, roll back to 0.
· The fifth row tells us that the counter will load in the value 'D' when the 2-bit control is equal to 10.
· The sixth row tells us that the counter will synchronously reset when the 2-bit control is equal to 11.

	clk
	reset
	ctrl
	D
	Q+

	0,1,falling
	x
	xx
	x
	Q

	rising
	0
	xx
	x
	0

	rising
	1
	00
	x
	Q

	rising
	1
	01
	x
	Q+1 mod 10

	rising
	1
	10
	D
	D

	rising
	1
	11
	x
	0

Complete the Q trace in the following timing diagram based on the state table for the mod-10 counter.

[image:]
Using only comparators, a 4-bit register, and an adder construct the logic for the mod-10 counter.
[image:]
ECE 383	Lecture #4 – sequential circuits	Page 1

--
-- Name:	Chris Coulston
-- Date:	Jan 13, 2015
-- File:	lec04.vhdl
-- HW:		Lecture 4
-- Crs:	ECE 383
-- Purp:	Demo the use of processes for a mod 10 counter
-- Documentation:	I pulled some information from chapter 8.
-- Academic Integrity Statement: I certify that, while others may have
-- assisted me in brain storming, debugging and validating this program,
-- the program itself is my own work. I understand that submitting code
-- which is the work of other individuals is a violation of the honor
-- code. I also understand that if I knowingly give my original work to
-- another individual is also a violation of the honor code.

library IEEE;		
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.ALL;

entity lec4 is
	Port(clk: in STD_LOGIC;
		reset : in STD_LOGIC;
		ctrl: in std_logic_vector(1 downto 0);
		D: in unsigned (3 downto 0);
		Q: out unsigned (3 downto 0));
end lec4;

architecture behavior of lec4 is
	signal rollSynch, rollCombo: STD_LOGIC;
	signal processQ: unsigned (3 downto 0);
begin

	--		ctrl	behavior
	--		00	hold
	--		01	count up mod 10
	--		10	load D
	--		11	synch reset

	process(clk)
	begin
		if (rising_edge(clk)) then
			if (reset = '0') then
				processQ <= (others => '0');
				rollSynch <= '0';
			elsif ((processQ < 9) and (ctrl = "01")) then
				processQ <= processQ + 1;
				rollSynch <= '0';
			elsif ((processQ = 9) and (ctrl = "01")) then
				processQ <= (others => '0');
				rollSynch <= '1';
			elsif (ctrl = "10") then
				processQ <= unsigned(D);
			elsif (ctrl = "11") then
				processQ <= (others => '0');
			end if;
		end if;
	end process;

	rollCombo <= '1' when (processQ = 9) else '0';
	Q <= processQ;

end behavior;

image2.png

image1.png

