[bookmark: _top][bookmark: _Toc348613107]ECE 383 – MicroBlaze Tutorial
ECE 383 –MicroBlaze Tutorial
Last Updated: Spring 2016
	Page 7 of 8	
Contents
ECE 484 – MicroBlaze Tutorial	1
Contents	1
Tutorial Overview	1
System Requirements	1
Create Basic Hardware Platform (UART)	1
Write Simple Software	3
Run & Debug Software	4
Add Custom IP (LEDs)	5
Update Software	8
Conclusion	8

[bookmark: _Toc348613109]Tutorial Overview
In this tutorial, you will be introduced to the tool flow for simple MicroBlaze designs. Specifically, you will create a design that continuously reads the input from UART and writes that value to the LEDs.
[bookmark: _Toc348613110]System Requirements
You must complete the following installation items before you can follow the steps of this tutorial:
· Install Xilinx ISE 14.X System Edition. This includes ISE Project Navigator, PlanAhead, Software Development Kit, and Platform Studio.
· Download the Atlys_BSB_Support_v_3_6.zip from the Digilent Atlys support site.
· Extract this folder to a permanent location on your computer.
· This tutorial assumes you have it extracted to: C:/Xilinx/Atlys_BSB_Support_v_3_6
· From the Digilent website, download and install the “Digilent Plugin for Xilinx Tools.”
· The installation instructions are included as a PDF in the downloaded zip file.
· This is the most important paragraph in the installation instructions:
The Digilent Plug-in can be installed in the ISE installation directory by copying libCseDigilent.dll (libCseDigilent.so on Linux systems) and libCseDigilent.xml to the plugins directory. For the Windows version of ISE Design Suite, the typical location is C:\Xilinx\14.1\ISE_DS\ISE\lib\nt\plugins\Digilent\libCseDigilent. For 64-bit Windows, use nt64 inplace of nt.
[bookmark: _Toc348613111]Create Basic Hardware Platform (UART)
The steps in this section will guide you through the process of creating a hardware platform for your embedded FPGA design. The ultimate product is a bitfile you can use to download to your FPGA.
1. Open Xilinx Platform Studio
[image:]
2. Click “Create New Project Using Base System Builder”
[image:]
3. In the first window of the wizard:
[image:]
a. Under “New Project,” browse to the folder you would like to save your project files. Note: This does not create a subdirectory for you!
b. Select the “AXI System” as your interconnect type
c. Under “Set Project Peripheral Repository Search Path,” enter the location you extracted the Atlys support zip file. Note: You must select the “Atlys_AXI*/lib” subdirectory.
d. Click “OK”
4. Now you enter into the Base System Builder wizard setup, which is specific to the Atlys board. This wizard will set which board you are working with, how to configure the MicroBlaze processor(s), and which peripherals you will need. In general, leave everything to their default values, except where noted here.
a. First window: Select the Digilint Atlys board, Revision C
[image:]
b. Second window: Remove all the peripherals in the bottom portion of the window.
[image:]
5. There are three main tabs under the “System Assembly View” that you will work with.
[image:]
a. Bus Interfaces – This is where you will connect your peripherals to various busses. For our design, everything will be connected to the same bus as the MicroBlaze processor.
b. Ports – This is where you define how the input/output ports from the various peripherals connect to FPGA pins. The names of the pins/ports are listed under this tab, but you still have to modify the UCF to specify which physical pin you are connected to on the FPGA.
c. Addresses – This is where you specify the memory-mapped address range for each peripheral. You need to be careful to give a large enough address block to cover all the software registers available in that peripheral. For peripherals you have not created, you can look at the datasheet for help on the needed memory size.
6. There are two tabs under the side window that are also useful.
[image:]
a. IP Catalog – this is a list of available peripherals that you can connect to your MicroBlaze processor. We will use the “UART Lite” peripheral to communicate our UART-to-USB connection your computer.
b. Project – This is where you can access the “raw” files that Platform Studio manages for you
i. UCF File – where you name/configure the FPGA pins
ii. MHS File – where the peripherals configuration is stored (address, ports, bus, etc.)
7. Add an “AXI UART (Lite)” peripheral from the IP Catalog
[image:]
a. Baud Rate: 9600
b. Number of Bits: 8
c. Parity: False
8. Under the “Bus Interfaces” tab, ensure the axi_uartlite_0 peripheral is connected to the same bus as MicroBlaze. This lets the UART module communicate with your MicroBlaze processor.
[image:]
9. Under the “Ports” tab, connect the RX and TX lines for the axi_uartlite_0 to external pins. This just gives the name of the port to look for in the UCF file.
[image:]
10. Under the “Addresses” tab, change the base address for xps_uartlite_0 to 0x84000000 with a size of 64K
[image:]
11. Finally, add the following lines to the UCF file (Project tab -> Project Files -> UCF File: data\<file>.ucf) so that the UART peripheral knows which pins to use for RX and TX:
net axi_uartlite_0_RX_pin LOC=A16 | IOSTANDARD = LVCMOS33;
net axi_uartlite_0_TX_pin LOC=B16 | IOSTANDARD = LVCMOS33;
12. Finally, click the “Generate BitStream” button to create your hardware bitfile. Note: This process will take about 10 minutes! When complete you will see “Done!” in the console area.
[image:]
[bookmark: _Toc348613112]Write Simple Software
Now that the hardware is designed, you can write software to run on your embedded MicroBlaze hardware platform. In this section, you will write the needed C code to interface with MicroBlaze and its UART peripheral.
1. Click the “Export Design” button, and then select “Export & Launch SDK.” Make sure the “Include bitstream and BMM” checkbox is checked.
[image:]
2. Xilinx SDK will ask you where you want to place your “workspace.” Create a new folder somewhere on your computer where you will store the source projects for this tutorial.
[image:]
3. Click File → New → Application Project
4. Name your project anything you want (without spaces!), and then click “Next.”
[image:]
5. Select “Empty Application”
[image:]
6. In the “src” folder of your new project, create a new C source file named “main.c” (File -> New -> SourceFile)
[image:]
7. Type the following code into the new file:
	#include <xuartlite_l.h>
#include <xparameters.h>

int main(void)
{
 while (1)
 {
 unsigned char c;
 c = XUartLite_RecvByte(0x84000000);
 XUartLite_SendByte(0x84000000, c);
 }

 return 0;
}

[bookmark: _Toc348613113]Run & Debug Software
This section will guide you through the process of downloading your code (.elf file) and hardware (.bit file) onto the FPGA. You will even learn how to debug your code, including breakpoints and looking at registers/variable values, real-time on the FPGA hardware.
1. Go to Xilinx Tools → Configure JTAG Settings (You may get a pop-up requesting admin access for this step)
2. Under “Type,” select “Digilent USB Cable” and then click “OK”
[image:]
3. Click the “Program FPGA” button [image:]
4. Under the software configuration, choose the *.elf file that matches the name of your project. Then click “Program”
[image:]
5. Once this process is complete, you can now open up your favorite serial terminal and see your characters echoed back from the FPGA. Congratulations! You have created your first embedded MicroBlaze FPGA system!
6. If you need to debug your software code, you can click the [image:] button, “Launch on Hardware”, to get a full debug interface. From this debug window, you can step through the code, observe register/ variable values, set debug points, etcetera. [Note: When I did this in Xilinx 14.4, I needed to add a “Debug Configuration” of “Xilinx C/C++ ELF” in order to get the correct debug setup. I left all the default settings, and it worked correctly with the hardware.]
7. What if you need to debug hardware? Well, you should use a combination of robust simulations, hardware logic analyzers, and (if necessary) ChipScope. The last option is beyond the scope of this course due to time constraints.
8. I encountered a problem while trying to download and got a worthless error message to that effect. I had to exit out of SDK and power cycle the ATLYS to resolve.
[bookmark: _Toc348613114]Add Custom IP (LEDs)
Now that we have learned how to work with pre-built hardware IP peripherals, you will now create a simple custom IP peripheral that allows you to access the LEDs from software.
1. In Xilinx Platform Studio, go to Hardware → Create or Import Peripheral
2. On the next screen, be sure “Create templates for new peripheral” is selected
[image:]
3. On the next screen, create an EDK user repository where you can store all the peripherals you create in this class. You will probably want to be able to reuse this peripheral in other projects.
[image:]
4. Type a name (without spaces!) you want for your peripheral. Its picky about the name (make sure its not red).
[image:]
5. The MicroBlaze processor in our design is using the AXI interface. Be sure to select “AXI4-Lite” as the interface type.
[image:]
6. Leave “User logic software register” and “Include data phase timer” checked.
[image:]
7. Change the number of software-accessible registers to 8. This will create the boilerplate VHDL code for 8 32-bit registers that you can read from and write to from software. Eight is overkill for this example, but the VHDL code will illustrate how to expand your design to include more registers.
[image:]
8. Leave the defaults on the IP Interconnect screen.
[image:]
9. You do not need to create a simulation platform for this example.
[image:]
10. Check the “Generate ISE and XST project files…” checkbox.
[image:]
11. Click Finish
[image:]
12. You have created the custom peripheral. Now you need to update the “user logic” in the peripheral to implement the functionality you desire.
13. Using your file browser, go to the location you saved your repository. In my case, this is: C:\Users\michael.tanner\Development\FPGA\ip_repo\MyProcessorIPLib\pcores\microblaze_tutorial_v1_00_a
14. You will see three different folders that make up your custom peripheral:
a. data – this contains the “settings” for your peripheral. In particular, you may need to modify the *.mpd and *.pao files. XPS uses these files to determine the “interface” to your custom IP peripheral.
i. The *.mpd file can be used to specify “ports” that will be connected to FPGA pins under the “Ports” tab of XPS.
ii. The *.pao file lists all the VHDL files you need to build your peripheral. If you add a separate file (e.g., video synchronization), you need to list it in this file. Order matters, so place the dependent files last.
b. devel – this contains the automatically generated project navigator files to help you develop and simulate your hardware design.
c. hdl – this contains the actual VHDL files that implement the logic of your design. If you add VHDL files to the peripheral, this is the directory you place them in.
15. To create our custom peripheral that allows up to write any value to the LEDs, we will take the following steps:
a. Modify the *.mpd file to let XPS know about the “LED” port it can be connected to FPGA pins through your project’s UCF file.
b. Modify the “your_peripheral.vhd” (the name of your peripheral) to add the “LED” output and then connect it into the structural instantiation of your “user logic.”
c. Modify the “user_logic.vhd” file to include an LED output, and then connect one of the pre-created software registers to the LED output.
d. Add the peripheral to our XPS design
e. Generate the bitfile
16. First we need to modify the *.mpd file to let XPS know about the “LED” port it can be connected to FPGA pins through your project’s UCF file. Add the following line to your *.mpd file in the “ports” section:
PORT LED = "", DIR = O, VEC=[7:0]
17. Now we need to modify the “your_peripheral.vhd” (the name of your peripheral) to add the “LED” output and then connect it into the structural instantiation of your “user logic.”
a. In the entity definition for your top-level peripheral VHDL file, find the “ADD USER PORTS BELOW THIS LINE” comment. Add the following port:
LED : out std_logic_vector(7 downto 0);
b. In the structural instantiation of the user logic file, find the “MAP USER PORTS BELOW THIS LINE” comment. Add the following port map:
LED => LED,
18. Modify the “user_logic.vhd” file to include an LED output, and then connect one of the pre-created software registers to the LED output.
a. In the entity definition for user logic VHDL file, find the “ADD USER PORTS BELOW THIS LINE” comment. Add the following port:
LED : out std_logic_vector(7 downto 0);
b. Find the “USER logic implementation added here” comment. Add the following line:
LED <= slv_reg0(31 downto 24);
c. At this point, you have completed the custom logic for your peripheral. However, take the time to look at the two process statements below your user logic.
i. The first process is used to write to software registers. In other words, the software is writing a value, and your user logic is storing it into one of the “slv_reg*” registers.
ii. The second process is used to read from software registers. In other words, the software is reading a value, and your user logic is writing the “slv_reg*” register value onto the data bus.
iii. In the next lab (and probably your final project), you will need to modify this slave register read/write logic to implement the required functionality.
iv. In addition, you may need to structurally instantiate some other logic you have created. Be sure you update your *.pao file to include any additional VHDL files required in your design. Also, make sure your files are in the correct library.
19. Add the peripheral to our XPS design
a. From the IP catalog, add your peripheral
[image:]
b. In the “XPS Core Config” and Instantiate and Connect IP” pop-up keep the defaults.
c. Under the “Bus Interfaces” tab, add the peripheral to the same bus as your MicroBlaze processor (axi4lite_0)
[image:]
d. Under the “Ports” tab, make an external connection for your peripheral’s LED port. Name it something like “led_bank_0_LED_pin".
[image:]
e. Add the following lines to your UCF file (Located in the Data Folder):
Note the name “led_0_pin” is the name in step d above appended with “_0_pin”.
net led_bank_0_LED_pin(7) LOC=N12 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(6) LOC=P16 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(5) LOC=D4 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(4) LOC=M13 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(3) LOC=L14 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(2) LOC=N14 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(1) LOC=M14 | IOSTANDARD = LVCMOS33;
net led_bank_0_LED_pin(0) LOC=U18 | IOSTANDARD = LVCMOS33;
f. Under the “Addresses” tab, change the base address for your custom peripheral to 0x83000000 with a size of 64K.
[image:]
g. Note: If you ever make changes to your peripheral (pao, vhdl, mpd, etc.), you can update your XPS project by going to Project → Rescan User Repositories
20. Generate the bitfile
21. Export the design to Xilinx SDK. Note: You may have to restart SDK to see the new system.bit file.
[bookmark: _Toc348613115]Update Software
Finally, you will write software that reads in a value from UART, echoes that value to the UART and LEDs.
1. Confirm that you want to import the new bitfile and design to your SDK project.
2. Add the following lines to your main.c file, where you deem appropriate:
#include <xil_io.h>
Xil_Out8(0x83000000, c);
3. Program the FPGA with your new bitfile and elf file.
4. Run your favorite terminal program to verify that the FPGA is echoing your characters to your terminal and the LEDs.
5. Note: look through the “xil_io.h” file to see the different options you have to read from and write to memory. These are just simple macros that provide you shortcuts to perform memory operations. All of this should be review from when we first introduced you to the C programming language.
[bookmark: _Toc348613116]Conclusion
We have covered quite a lot of ground in this tutorial. It is critical that you understand each step of this development process, as this is critical to your next lab and the final project. Be sure you ask your instructor if you are unsure about anything we covered in this tutorial. Specifically, you should understand the following:
1. Create an embedded MicroBlaze hardware platform with Xilinx Platform Studio
2. Add a standard peripheral component:
a. Connect it to the MicroBlaze bus
b. Configure its memory-mapped address
c. Connect input/output ports to FPGA pins
3. Create and add a custom peripheral:
a. Make individual read/write registers available from software
b. Structurally add additional VHDL modules in separate files
4. Write software to interface with any given MicroBlaze peripheral. In particular, you should be able to write to and read from the peripheral’s software registers.
5. [bookmark: _GoBack]Test and debug your software/hardware on the FPGA.
image1.png
. Xiinx Design Tools.
3 Docnay
) 158 Desgn e 142
3 Accessores
[ri—
3 Documentaton

i ex
€ Xinx Software Development Kit—|
11 Documentatiofin Patfor Studo)
L Toos

< Bk

image2.png
Create New Profect Using Base System Buider

Use the Base System Builder wizard to create an XPS project

image3.png
g BSB Wizard

Broject e [Co\users\michaeltanner Development FPGAAtys MicroBlaze Tutorialisystem.xmp | Bronse

[-Select an Interconnect Type:

& masystem

AXUs an inerface standard recently adopted by Xiinx 3s the standard nterface used for al current and
future versions of Xiinx IP and tool flows. Detals on AXI can be found in the AXI Reference Guide on
i com.

© Pissystem

PLB s the legacy bus standard used by Xinx that supports current FPGA familes, induding Spartans and
Virtexs. PLB IP wil not support newer FPGA famies, 5o s not recommend for new designs that may
migrate to future FPGA families. Detals on PLB can be found in the PLEV46 Interface Smplfications.
document on xiinx.com.

-Select Existing bsb Settings Fle(saved from previous session)

|-Set Project Peripheral Repository Search Path

[C: Winx\Atys_B58_Support_v_3_6\Atlys_AXI_BSB_Supportlib

(|

image4.png
Board and System Selection
Select a target development board and a System Template.

-Board

¥ Create 3 System for the Following Development Board (Pre-selected Device Info)

Board Vendor [Digfent <] BoardName

" Create 3 System for a Custom Board

Board Revsion [C =

(~Board Configuration
irctectre [Fparans =] Devce aoands] Refeence Closkrequency [B000 =] me
pcage [omiz 2] speedcrace |5 =] Resetpolaty [eton =] I Use steppng 2
Selctasystem
[Srge Mo Procssor Syoiem - Sstem Infomation
[Dual MicroBiaze Pr s ‘This system consists of one instance of MicroBlaze with external memory and
comorly used perpherdssuch as UART, GPIG, IC, Evernt ec. Perpherals are
connected on s shared AXI terconnect, hie DDR memory = comnected on 2 AXL
interconnect configured as a crossbar. Click Next to modify the defat system.
Custom boards do ot have defaut perpheras and need o be selected on the
nextpace.
Optimzaton Svategy
& Area € Throughput
Rebted Informaton

Vendor's Website
Vendor's Contact Information

Thid Party Board Definition Fes Dowrload Wiebsite

The Atlys board features a Xiinx Spartan-6 XCESLX45-3CSG324C FPGA device, two input and two output HMI ports, 16 (x16) DDR2 DRAM
 component for use with Spartan-5, 128Mbit Numonyx N25Q 128(x4) SPI Fiash memory, Marvel Alaska 10/100/1000 PHY device (S8E111) with

|GMIL interface, HID Host for USB mouse, keyboard, USB-UART bridge for the serial port, AC 57 Codec with color coded jacks, 8 siide switches, 5
pushbuttons in gamepad configuration, 8 LEDs and 1 reset button’

ore o

image5.png
Base System Buikder - AXI flow

Configure the processor(s). To add a periheral, crag it rom the “Avalable Peripherals” st to the Included Peripherals lst. To configure a core

parameter, cick on the peripheral.

Enable Floating Point Unit r

Local Memory Size T3 >
Tnstruction Cache Size T3 >

Data Cache Size g3 <

5 10 Devices
Diglent Usb_Epp
ETHERNET
Diglent_AC97_Cnti

5 Interal Perpherals
‘2xi_bram_ctl
axi_timebase_wdt
axi_tmer

hdd >

<Remove.

QsPL_FLaSH
Core: 2xi_quad_spi, C_SPI_MODE: Standar.
[Rs232_Uart_1

‘Core: ax_uartite, Baud Rate: 9600, Data Bi

NOTE: Base System Sider abvays enables Merofisze caches. Allmemories cornected o the AXT3 ntercornect are cached.

et

P [="

image6.png

image7.png
’me P Catalog

image8.png
& & EDKInstall
5 Commurication LowSpeed
e AXIUART (16550-stle) 1012 0 a1

e XPS UART (16550-style) 3.00.2 s 1
. Jr XPS UART (lite) 1022 xps_uz.

image9.png
I

axiite.

image10.png
= [T |

Interrupt

Connected to External Ports
External Ports:zaxi_uartite_0_RX_pin
External Ports::ax_uartite_0_TX pn # O

Connected to BUS axidite_0 ;‘
1

image11.png
Instance Base Name Base Address | righ Address
[/ micoblaze. 0 Address Ve,

"CLASEADDR 0x00000000 0x00001FFF
CBASEADDR 0x00000000 0x00001FFF
0x41400000

Hzxg g
lale

image12.png
Generate BitStream

image13.png

image14.png
Select a workspace

i SDK stores your projects i a foder called @ workspace.
Choose 3 workspace folder to use for this session.|

Worspace: [V sers el tamen DeveapmentFPGA ECE#4_Mizoze _Totra SOK T

T Use this as the defauit and do not ask again

image15.png
=1Bix|
Application Project
e s e e o &

Projectname: | microblazel tutorial

IV Use defauitlocation

Locstion; [C:\sersVachaslamer DevelopmentFPGASys MicroBaze Tt |_Bravse.

hosse filesyster [Gefaut]

[Targt Hardware
HordharePatfor [ys Microlaze_Tutora_ltiorn =
rocessor [mcobize. =l
[Targt Softuare
05 Patforn [sandaone
Language & C oot
Board Support Package (* Create New | atlys_tutorial_bsp.

€ Use existing,

image16.png
 New Project

—[ol x|
Templates

Create one of the avaiable templates to generate a fuly-functioning application
project.

Avalable Templates:

Blank C project.
Felo Vorid

Memory Tests
peripheral Tests:
SREC Bootioader

® =

e e

image17.png
@ New Source

Source File

Create anew source fie.

Source folder: [ce464_tutorialjsrc.

Source fig: [main.

Tenplate: [DefoultC souce tempiete

[===

image18.png
@ Configure JTAG Set

s
Configure JTAG Settings

‘Spedfy the JTAG cable to use for communication and JTAG Device Chain configuration of the target board.

These settings affect how XMD connects to the FPGA.
[-ITAG Cable:

Other Optons:

- JTAG Device Chain

& Automaticaly Discover Devices on JTAG Chain
" Manual Configuration of JTAG Chain

a D Fl e

D Code

RLength

©)

[oc | e |

image19.png

image20.png
Program FPGA
‘Spedify the bitstream and the ELF files that reside in BRAM memory

-Hardware Configration
Hardware Specfication: C:\Users\ichael.tanner|Development\FPGA\ECE 484 MicroBlaze Tutorial\SDK\My_SDKIECE484 MicroBlaze Tutorial_hwi_platformlsystem.sanl
Bitstream: | Co\Users\michael. tanner DevelopmentV-PGA \ECE 54 MiroBiaze_Tutoral\SDK\My_SDKIECE#84_McroBlaze_Tutoral_hw_platformisystem bit Browse.

BM Fie: [C:\Users\michael. tanner Development FPGA\ECE 84 MicroBlaze Tutoral\SDK My_SDKIECE484_McroBlaze_Tutoral_hwi_platformlsystem_bd.bmm | Browse.

image21.png

image22.png
Create and Import Peripheral Wizard

Peripheral Flow

This tool will help you create templates for a new EDK I, o help you import an existing EDK IP into an XPS project or EDK repository. The inerface fles
and drectory structures required by EDK wil be generated.

E— %
4
>

~Select fow
 Create templates for a new peripherl
€ Import existing peripheral

|-Flow description

This tool il create HDL templates that have the EDK compliant portjparameter nterface.
You wil need to implement the body of the peripheral.

I~ Load an exsting .p settings fie (saved from a previous session)

More Info

image23.png
Cre

te Peripheral
Repository or Project
Indicate where you want tostore the new perpheral.

‘A new peripheral can be stored in an EDK repository, or in an XPS project. When stored in an EDK repository, the peripheral can be accessed by multiple
XS projects.

 To an EDK user repository (Any directory outside of your EDK installation path)

Repository: | C:\serswichael. tanner Development FPGAYp_repo

€ ToanXPs project

Project:

5]

Browse.

ral wil be placed under:
Co\sers\michael. tanner\Development\FPGAYp_repo\MyProcessarlPLblpcores:

More Info

image24.png
21X

Name and Version
Indicate the name and version of your perpheral.

Enter the name of the peripheral (upper case characters are not alowed). This name wil be used as the top HDL design entity.

Name:

[ecese ora
Verson: £00.2
Major revision: Minor revision: Hardware/Software compatibiity revision:

Descrption: | ¢ e 454 tutoril that teaches students how to create a *very™
simple GPIO (realy...output) peripheral for the LEDs.

lirary name: ece484._tutorial_v1.00_a

AIHDL fles (either created by you o generated by this too) that are used to implement this peripheral must be compled nto the logica rary.
name above. Any other referred logical braries in your HDL are assumed to be avaable n the XPS project where this peripheral i used, or in EDK
reposiories ndcated in the XS project settings.

et

image25.png
7 Create Peripheral

Bus Interface
Indicate the bus nterface supported by your peripheral.

21x

To which bus il this peripheral be attached?

& AXT#te: Simpler,non-burst control register style interface

" aX1%: Burst Capable, high-throughput memory mapped interface
€ aXi4-Stream: Burst Capable, high-throughput sreaing interface
€ East Simpex Link (FSL)

- ATTENTION

Refer to the folowing documents to get 2 better understanding of how user peripherals connect to the AXI bus nterconnect.
NOTE - Select the bus inerface above and the corresponding nk(s) wil appear below for that nterface.
AXE Specifcation

‘AMBA Xtensibl Interface-4 (AXI4-Lte) IPIF Specfication for Control/Periheral devices.

image26.png
2

IPIF (IP Interface) Services
Indicate the IPIF services required by your peripheral

Your peripheral wil be connected to the PLB (v4.6) nterconnect through corresponding PLB IP Interface (IPIF) modues, which provide you with a quick
way to implement the interface between the PLB interconnect and the user logic. Besides the standard functions e address decocing provided by the
siave IPIF modue, the wizard tool also offers other commonly used services and configurations to simpify the implementation of the design.

Processor Local Bus (version 4.6)

5

SPLB

H

IPIC Master
Read LocalLink
Wite LocalLink

More Info

Slave service and configuration

Typicallyrequired by most peripherals for operations ik logic control,
status report, data buffering, multple memory/address space
access, and etc. (PLB slave interface wil always be induded).

I~ Software reset [User logc software register
I™ Read)Miite EIFO I™ User logic memory space
I™ Interrupt control % Indude data phase timer

‘Master service and confiuration

Typically required by complex peripherals ke Ethernet and PCT for
commanding cata transfers between regions (PLE master nterface.
wilbe ncluded if master service selected).

™ Userlogic master

i

<Back

image27.png
21X

User /W Register
Configure the software accessible registers n your peripheral.

The user specificsoftware accessibie registers vill b implemented in the user-ogic modue of your perpheral. Such registers are typically provided for
software programs to control and to moritor the status of your user logi. These registers are addressable on the byt half-word, word, double word
or quad word boundaries depending on your design. An exampie logc for register read|rite wil be induded i the user-ogic modue generated by the
wizard tool for your reference.

User logic software registers may take ful advantage of the save IPIF adress-

decoding serviceto generate CE decodes for al of the indvidua regster of
Bus2IP RiRen interest, The ciagram on the eft shows the simplest et of PIC save signas to
Bus2IP e 1 readjvite the registers.

Bus2IP RiCE

AR Number of software accessbe regiters: [5 = (1t0 4036)

Bus2lp_Data

More Info <Back

image28.png
21X

1P Interconnect (IPIC)
Select the interface betueen the logic to be implemented in your peripheral and the IPTF:

Your peripheral wil be connected to the PLB (v4.6) nterconnect through suitable IPIF master fslave modue(s). Your custom logic from the user-fogic
modue interfaces to the IPIF moduie(s) and other sub-blocks through a et of signals caled the I interconnect (PIC) interface. Some of the ports are:
alays present, some are pre-selected based on the IPIF services you required, and you can choose other optional ports to be incuded n the design

based on your needs.
Note: al IPIC ports are active high.

-Port description

Bus2P_Ck.
Bus2P Reset
Bus2IP_Addr
[susap cs
Bus2P RNW
Bus2P Data
BuszP BE
Bus2P RACE
Bus2P_WirCE
P2pus Data
IP2Bus ReAck
IP2Bus WrAck
TP2Bus Error

H
&

IPIC for others
IPIC for master

Restore Defaults

More Info

image29.png
(OPTIONAL) Peripheral Simulation Support

Create Peripheral

21x

The EDK provides 2 BFM simuation platform to help you simlate your peripheral. Indicateif you want tis too to generate the appropriate HDL and

Bus Funchonl Language (BFL) stmulus il for the target bus.

PLBYA6 Devico (master) |

PLBYAB Device (slave) +————» at

PLBYAG Monkor +———)

Note: License Redquired for BFM IPs n Simulation.

I™ Generate BFM simuation platform

Note: IS, ModelSim-SE, ModelSim-PE and QuestaSim simuiators are
supported.

»A testbench template will be generated on top of your
peripheral.

*A test platform description i (bfin_system.mhs) consistng of
e subaysen statedb e dagram i b generated 20

Pt CoreComect s erctons canbe defind o B
‘command fle (sample.bf).

#Stimuus for other non-CoreConnect bus 1/0s of your
peripheral can be defined n the testbench fie.

«Please refer to the READVE fie for BFM simuiation
nstructons.

More Info

image30.png
Create Peripheral

(OPTIONAL) Peripheral Implementation Support
(Generat optional fles for harcware/software implementation

Upon completon, tis tool il reate synthesizable HDL fes that implement the IPIF services you requested. A stub user logi' moduie wil be reated.

You wil need to complete the implementation of this module using standard HDL design fiows. The tool il also generate EDK interface fies (mpd/pao)
for the synthesizable templates, 5o that you can hook up the generated peripheral to processor system.

te

Peripheral (VHDL) Should the peripheral nterface (ports/parameters) orf st change, you wil need to

S
-
[¥ Generate ISE and XST project fles to help you implement the peripheral using XST flow
I Generate template driver files to help you implement software interface.

More Info

image31.png
21x

Congratulations!

Vihen you cick Finish, HDL fies representing your peripheral wil be generated. You wil have to implement the
functonaity of your peripheraln the stub user_ogic' template fie.

TMPORTANT: I you make any interface changes to the generated peripheral (ncuding perpheral name, version,
ports and parameters), or any fie changes (add or remove fies), you ill need to regenerate the EDK nterface:
fies by using tis ool in the Import mode.

Thank you for using Creste and Import Deripheral Wizard! Plesse find your o
peripheral hardware templates under C:
\Users\michael.canner\Development\FEGA\ip_repo\MyProcessorTELib/peores/sced
£4_cucorial v 00_a.

Peripheral Summary:

<cop name © ecesss_tusorial
version S 1008

cipe LB (va.6) slave
esvures slave sccachment

user s/ registers

Addrass Block Summar

user logic slv : C_BASSADDR + 0x00000000
- C_BASEADDR + 0x000000FF

File Summary

NOTE: A *.cp settings fie wil be created under your peripheral’ “devi” foder. It can be loaded in a future wizard
session to regenerate your perpheral.

Clck Finsh to generate your peripheral.

T [="

image32.png
[Project Peripheral Repository 1
B USR

8 ECE484 TUTORIAL

image33.png
SAX

axidite_0

B4 microblaze_t.. 1.00.2

image34.png
) ece383 tuto..
LED External Portszece383_tutorial 0_LED_pin o 701
5 (BUSIF)... Connected to BUS axidlite 0

image35.png
Instance. Base Name Base Address

7 microblaze_0's Address Map.
dimb_cntr CLBASEADDR 0x00000000
imb_ent CBASEADDR 0x00000000
ece84_tutorial_0 CBASEADDR 0x83000000

