

ECE 383 - Embedded **Computer Systems II** Lecture 1 - Intro to **Digital System Design** UNITED STATES **AIR FORCE Dr George York** Room 2E46E **ACADEMY** 333-4210

719-484-9608

DFEC Computer Engineering Courses

Lesson Outline

- Why digital systems? 1.
- Instructor/Course Introduction 2.
- Methods of implementing digital systems 3.
- **Custom digital device technologies** 4.
- Abstraction 5
- **Digital System Design** 6.
- **Design Goals** 7.

HW H

Digital Design – Majority Circuit 8. -> install Vivado -> Bitbucket

Vivado version 2018

Integrity - Service - Excellence

-> answer questions in Grade Scope

INSTRUCTOR/COURSE INTRO

Dr George York

- Education (embedded computers & DSP)
 - BSEE, USAFA '86
 - MSEE & PhD, U of Washington, Seattle
- USAF Career, 62E
 - Eglin AFB (AFRL Munitions)-- smart bombs
 - Taejon, Korea (Engr/Scientist Exchange Program)
 - USAF Academy, '92-'94, '02-'04, '09-now
 - PhD Medical Ultrasound Machines
 - National Security Agency (NSA), Tactical SIGINT
 - London, UK (AFOSR/EOARD)

Inte

- My Spare Time
 - Cycling Team

Where is Dr York?

West (Terrazzo) Side

- **1.** Be prepared for class (reading/homework)
- 2. Pay attention in lecture (1st hour)
- 3. Be productive during 2nd hour of application

Final Exam?

Course Materials/etc

Website:

- https://georgeyork.github.io/ECE383_web
- Bitbucket and Gradescope

Textbook:

- RTL Hardware Design Using VHDL, Pong P. Chu
- I have found it free via the Air Force in the AF e-Learning environment.
- In the AF Portal under Career & Training, click on AF e-Learning.
- From there I clicked on Browse The Library at the top and entered RTL in the Search box at the top of the page.
 - Your requested title is second in my results list.

Lab Reports

Note on Lab Reports:

- Last year created README in repo (mark down), and grade feedback with bitbucket's "issue tracker"
- This year? Maybe provide shell of lab report in Word, and submit/feedback via gradescope?

WHY DIGITAL SYSTEMS?

Why Digital Systems?

- Advantages
 - Reproducibility of information
 - Flexibility and functionality: easier to store, transmit and manipulate information
 - Economy: cheaper device and easier to design

Digital circuitry replaces many analog systems:

- Audio recording: from tape to music CD to MP3 (MPEG Layer 3) player
- Image processing: from silver-halide film to digital camera
- Telephone switching networks
- Control of mechanical system: e.g., "fly-by-wire"

First fly-by-wive Fighter?

Why Digital Systems?

Fly-By-Wire Digital System

METHODS OF IMPLEMENTING DIGITAL SYSTEMS

Integrity - Service - Excellence

Δ

FPGA vs Microcontroller?

- What is an FPGA? VS ASIC?
- What is a Microprocessor? (or computer?)

4 January 2022 Integrity - Service - Excellence

UNITED STATES AIR FORCE ACADEMY

Digital Implementation Methods

- **1. General-purpose hardware with custom software**
 - General purpose processor
 - Performance-oriented processor (e.g., Core i7)
 - Cost-oriented processor (e.g., PIC microcontroller)
 - Special purpose processor
 - DSP processor (multiplication-addition)
 - Network processor (buffering and routing)
 - Graphics engine (3D rendering)
- 2. Custom software on a custom processor (known as hardware-software co-design)
- 3. Custom hardware

Note: A complex project may use more than one of these!

Digital Implementation Methods

Development Time Increasing

Integrity - Service - Excellence

Increasing Power Consumption

CUSTOM DIGITAL DEVICE TECHNOLOGIES

Integrity - Service - Excellence

18

ECE

Custom Digital Device Technologies

- Where customization is done:
 - In a fab (fabrication facility): ASIC (Application Specific IC)
 - In the "field": non-ASIC

Six device technology classifications:

- 1. Full-custom ASIC
- 2. Standard cell ASIC
- 3. Gate array ASIC

VLSI

- 4. Complex field programmable logic device
- 5. Simple field programmable logic device
- Off-the-shelf SSI (Small Scaled IC)/MSI (Medium Scaled IC) components L⁵¹

Full-custom ASIC

- All aspects (e.g., size of a transistor) of a circuit are tailored for a particular application.
- Circuit fully optimized
- Design extremely complex and involved
- Only feasible for small components
- Masks needed for all layers

ECE 373 Standard-Cell ASIC

- Circuit made of a set of pre-defined logic, known as standard cells
 - **Basic logic gates**
 - 1-bit adder,
 - D FF
 - etc.
- Layout of a cell is pre-determined, but layout of the complete circuit is customized
- Masks needed for all layers

Gate array ASIC

- Circuit is built from an array of a single type of cell (known as base cell)
- Base cells are pre-arranged and placed in fixed positions, aligned as one- or two-dimensional array
- More sophisticated components (macro cells) can be constructed from base cells
- Masks needed only for metal layers (connection wires)

Complex Field Programmable Device

- Device consists of an array of generic logic cells and general interconnect structure
- Logic cells and interconnect can be "programmed" by utilizing semiconductor fuses or switches
- Customization is done "in the field" vs. fab
- Two categories:
 - CPLD (Complex Programmable Logic Device)
 - FPGA (Field Programmable Gate Array)
- No custom mask needed

Simple Field Programmable Device

- Programmable device with simple internal structure
 - PROM (Programmable Read Only Memory)
 - PAL (Programmable Array Logic)
 - etc.
- No custom mask needed
- Replaced by CPLD/FPGA

SSI/MSI components

- Small parts with fixed, limited functionality
 - 7400 TTL series (more than 100 parts)
 - etc.
- Resource is consumed by package but not silicon:
 - Power
 - Board area
 - Manufacturing cost
 - etc.
- No longer a viable option

NRE (Non-Recurrent Engineering) cost: one-time, per-design cost

Types of Cost

26

- Part cost: per-unit cost
- Time-to-market cost: loss of revenue

Technology Summary

Aciz

Trade-off between optimal use of hardware resource and design effort/cost

No single best technology

የ ግ	FPGA	Gate array	Standard cell
tailored masks	0	3 to 5	15 or more
area			best (smallest)
speed			best (fastest)
power			best (minimal)
NRE cost	best (smallest)		
per part cost			best (smallest)
design cost	best (easiest)		
time to market	best (shortest)		
per unit cost		depend on volume	

ABSTRACTION

Integrity - Service - Excellence

28

Digital System Views

- Behavioral view:
 - Describe functionalities and I/O behavior
 - Treat the system as a black box
- Structural view:
 - Describe the internal implementation (components and interconnections)
 - Essentially block diagram
- Physical view:
 - Add more info to structural view: component size, component locations, routing wires
 - E.g., layout of a print circuit board

Register-Transfer Abstraction

- Contains higher-level components (register, adder, mux, etc.) think of datapaths in ECE 281/382
- Based on clock "tick" event
- Described as a finite state machine
- Later on: a design methodology in which the system operation is described by how the data is manipulated and moved among registers

Integrity - Service - Excellence

DIGITAL SYSTEM DESIGN

VHSIC Hardware Design Language

UNITED STATES **AIR FORCE** ACADEMY

VHDL Design Veriloa

- VHDL is just a language which is used to describe hardware circuits.
- A piece of hardware is described in VHDL in two separate ways. Prototype
 - Entity Describes the inputs and outputs
 - Architecture Describes what transformation the box performs.
- There are two good reasons to realize a design in VHDL, you can
 - simulate the hardware
 - synthesize the hardware

Digital System Simulation

Simulation Test Bench

- When a design is simulated you have complete control of time and the values of all the signals (wires) in the design.
- Aids in Debugging
- We will use Xilinx Vivado to perform our VHDL simulations.

Digital System Implementation

VHDL

Synthesis

UNITED STATES

ACADEMY

BBB

- Maps a higher-level description to lower-level components (RT, gate, technology map levels)
- Results in structural view
- Physical Design

- Generates netlist based on synthesis
- Floor Plan layout based on RT/processor level
- Place & Route gate level
- Circuit Extraction Compute propagation delays (Cp/R)
- Power/Clock Networks

Etc.

- 3. <u>Verification</u> Checking whether a design meets the functional and timing goals
 - Simulation
 - Formal verification
 - Hardware emulation
- 4. <u>Testing</u> Process of detecting physical defects of a die or package that occurred during manufacturing

DESIGN GOALS

Integrity - Service - Excellence

36

Design Goals

- **1. Design for Efficiency**
 - Synthesis cannot convert bad designs into good ones
 - Know what hardware your HDL will create
- 2. Design for Large
 - Design a large module
 - Design to be incorporated into a larger system
 - Design to facilitate the overall development process
- 3. Design for Portability
 - Device independent
 - Software independent
 - Design reuse

DIGITAL DESIGN – MAJORITY CIRCUIT

Integrity - Service - Excellence

38

Digital Design – Majority Circuit

UNITED STATES

4 January 2022

Important Notes

You can use all the standard logic gates including:

- AND
- OR
- XOR
- NAND
- NOR
- XNOR
- NOT

what value can a signal have of type std_logic?

4 January 2022 Integrity - Service - Excellence

Important Notes

The "data type" std_logic can represent much more than just a logic 0 or 1.

- 'U', -- Uninitialized
- 'X', -- Forcing Unknown
- '0', -- Forcing 0
- '1', -- Forcing 1
- 'Z', -- High Impedance
- 'W', -- Weak Unknown
- 'L', -- Weak 0
- 'H', -- Weak 1
- '-' -- Don't care

Vivado, etc

- Got Vivado Installed?
- BitBucket:
 - Create Repo for ECE383
- george.york@nsafa.edn Give me access: GeorgeYork
 - Settings \rightarrow user & group access \rightarrow add George York, read access
 - **Issue Tracker**
 - Settings→Issue Tracker→Private Issue Tracker

Boards:

- Digilent-Artix-7-Nexys Video (xc7a200tsbg484-1)
- If testbench comes up as source file
 - Move to simulation sources

HW#1, due BOC T2

Turn in via Gradescope, and post code to bitbucket

4 January 2022 Integrity - Service - Excellence

4 January 2022