
ECE 383 – Embedded

Computer Systems II
Lecture 12 – Datapath

and Control

1

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Lesson Outline

 Time Logs!

 HW# 8 Due
 CpE’s and device drivers or HW interface

 Ready, Scan, CW, SW?

 GR Lesson 14
 Example code and Mini-C

 2-Line Handshake

 Datapath and Control – BRAM

 Lab 2 Next Lesson!
 Show schematic

 Packages [not required anymore]

2

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Schedule

39 February 2021

George York

George York

George York

George York

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Given on GR

49 February 2021

Given on GR

59 February 2021

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

HW8: Ready, Scan, CW, SW?

 Datapath and Control Design Methodology

 Datapath - responsible for data manipulations

 Control - responsible for sequencing the actions of the

datapath

6

Fig 10.0 - An abstract digital system constructed from a datapath and a control unit.

reversed

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GR Hints

 Bring your calculator. No sympathy if you don’t.

 Clock and Reset on diagram?

 Two states or one state?

 Decoding clock, low and high

 Can you make a 4-state FSM to track the rise and fall

of a clock?

79 February 2021

89 February 2021

George York

GR: two states or one state?

99 February 2021

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control - BRAM

10

11
9 February 2021

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control - BRAM

 Artix 7 FPGA

 First page of 7 Series Family Overview:

https://www.xilinx.com/support/documentation/data_sheet

s/ds180_7Series_Overview.pdf

 Third page lists quantities how many of these resources

our Nexys Video boards have.

For reference we are using the XC7A200T chip

and the SBG484 package.

12

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control - BRAM

 In our upcoming Lab2, you will need a large RAM to

store 18-bit audio samples streaming in from the ATLYS

board.

 The Xilinx FPGA on our board, a Artix 7, contains built in

block RAMs (BRAMs).

 You can select of the three main BRAMSconfiguration

(BRAM_SDP_MACRO, BRAM_SINGLE_MACRO,

BRAM_TDP_MACRO) available in the UNIMACRO

library.

 We will be using a BRAM_SDP_MACRO in our design.

 According to Vivado Design Suite 7 Series FPGA

Libraries Guide:

13

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug953-vivado-7series-libraries.pdf

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control - BRAM

 FPGA devices contain several block RAM memories that can

be configured as general-purpose 18Kb or 36Kb RAM/ROM

memories.

 These block RAM memories offer fast and flexible storage of

large amounts of on-chip data.

 Both read and write operations are fully synchronous to the

supplied clock(s) of the component.

 However, READ and WRITE ports can operate fully

independently and asynchronously to each other, accessing

the same memory array.

 Byte-enable write operations are possible, and an optional

output register can be used to reduce the clock-to-out times

of the RAM.

14

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control - BRAM

 This is a schematic symbol

of BRAM memory.

 Notes:

 Inputs are on left

 Outputs are on the right.

 Left top side - write

functions

 Left bottom - the read

functions

 The three types of BRAMs

are highly configurable, but

may be overwhelming to

the new designer.
15

George York

George York

George York

George York

George York

George York

George York

George York

George York

169 February 2021

BRAM read/write

I n t e g r i t y - S e r v i c e - E x c e l l e n c e 179 February 2021

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control – BRAM

Example Instantiation

--

-- Reference: Vivado Design Suite 7 Series FPGA Libraries Guide

-- UG953 (v 2012.4) July 25, 2012

--

-- Page: 10

sampleMemory: BRAM_SDP_MACRO

generic map (

BRAM_SIZE => "18Kb", -- Target BRAM, "18Kb" or "36Kb"

DEVICE => "7SERIES", -- Target device: "VIRTEX5", "VIRTEX6", "SPARTAN6, 7SERIES"

DO_REG => 0, -- Optional output register disabled

INIT => X"000000000000000000", -- Initial values on output port

INIT_FILE => "NONE", -- Not sure how to initialize the RAM from a file

WRITE_WIDTH => 18, -- Valid values are 1-72 (37-72 only valid when BRAM_SIZE="36Kb")

READ_WIDTH => 18, -- Valid values are 1-72 (37-72 only valid when BRAM_SIZE="36Kb")

SIM_COLLISION_CHECK => "NONE", -- Collision check enable "ALL", "WARNING_ONLY",

"GENERATE_X_ONLY" or "NONE"

SRVAL => X"000000000000000000") -- Set/Reset value for port output

18

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control – BRAM

Instantiation continued

port map (

DO => readOutput, -- Output read data port, width defined by READ_WIDTH parameter

RDADDR => vecAddrRead, -- Input address, width defined by port depth

RDCLK => clk, -- 1-bit input clock

RST => reset, -- active high reset

RDEN => cw(5), -- read enable

REGCE => '1', -- 1-bit input read output register enable - ignored

DI => writeInput, -- Input data port, width defined by WRITE_WIDTH parameter

WE => cw(3 downto 2), -- since RAM is byte read, this determines high or low byte

WRADDR => vecAddrWrite, -- Input write address, width defined by write port depth

WRCLK => clk, -- 1-bit input write clock

WREN => cw(4)); -- 1-bit input write port enable

19

George York

I n t e g r i t y - S e r v i c e - E x c e l l e n c e 209 February 2021

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control –

Class Activity

 Class Activity:

 Determine what will happen inside the RAM defined above

when subject to the following signals.

-- vecAddrRead = vecAddrWrite - 1

-- writeInput <= "10101010101010" & vecAddrWrite(3 downto 0);

cw(5) <= '1', '0' after 7 us, '1' after 8 us; -- READ ENABLE

cw(4) <= '1', '0' after 3 us, '1' after 4 us; -- WRITE ENABLE

cw(3 downto 2) <= "11", "10" after 4 us, "01" after 5 us, "11" after 6us; -- BYTE WRITE ENABLE

cw(1 downto 0) <= "01"; -- COUNTER CONTROL

21

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control - BRAM

22

Addr writeInput WREN=cw(4) WE=cw(3,2) RDEN=cw(5) readOutput

0x0 0x2AAA0

0x1 0x2AAA1

0x2

0x3

0x4

0x5

0x6

0x7

0x8 0x2AAA8

0x9

0xA

0xB

0xC

0xD

0xE 0x2AAAE

0xF

239 February 2021

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control -

Packages

 Packages are a nice way to hide lots of component

declarations

 Redundancy is one of the main contributors of

complexity in software is redundancy.

 Having an entities declaration in several different

architectures is redundant.

 Pulling all these declarations into one file eliminates

this redundancy and make the code much easier to

maintain and update.

 So how do you create a Package?

24

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control -

Packages

 Packages – Package for Lab 2

 http://ece.ninja/383/lecture/code/lab2_pack.vhdl

 Include this at the top of your file:

use work.lab2Parts.all; -- all my components are declared here

25

http://ece.ninja/383/lecture/code/lab2_pack.vhdl

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

2-Line Handshake

 In most cases, digital systems require data from the

external world in order to perform their tasks.

 In cases where the digital system and the outside

word operate on independent clocks, the transfer of

data is complicated by the lack of a common clock.

 To understand how a reliable transfer of data can be

performed in this circumstance, consider the

following scenario of a producer trying to deliver a

packet of candies to a consumer.

26
Figure 12.2: A timing diagram of a data transfer between a producer and a consumer.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

2-Line Handshake

27
Figure 12.2: A timing diagram of a data transfer between a producer and a consumer.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

2-Line Handshake

 This protocol, regardless of who is the producer or

consumer, is called a two-line handshake because

the communicating agents must have two,

coordinating signals Request (REQ) and

Acknowledge (ACK) and at least one data line.

 REQ signal - used by the active agent to signal a

readiness to perform a data transfer.

 ACK signal - used by the passive agent to

acknowledge the data has been transferred.

28
Figure 12.2: A timing diagram of a data transfer between a producer and a consumer.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

2-Line Handshake

 An algorithm description of the two-line handshake for a

digital circuit which is the passive consumer is shown below.

1. while(REQ==0); // Do nothing but wait

2. register = DATA // Latch the data

3. ACK=1; // Acknowledge the producer

4. while(REQ==1); // Do nothing but wait

5. ACK=0; // Acknowledge the producer

 In Line 1 and Line 4, the body of the while loops are empty;

there is nothing to do but wait.

 Furthermore, with respect to the external world, the ACK and

REQ signals act as status and command bits, respectively.

 The algorithm above is translated into datapath and control in

Figure 12.3.

29
Figure 12.2: A timing diagram of a data transfer between a producer and a consumer.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

2-Line Handshake

30

Figure 12.3: The datapath and control components required to implement a two-line handshake

where the digital system is the passive consumer.

1. while(REQ==0);

// Do nothing but wait

2. register = DATA

// Latch the data

3. ACK=1;

// Acknowledge the producer

4. while(REQ==1);

// Do nothing but wait

5. ACK=0;

// Acknowledge the producer

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Datapath and Control –

Exercise—HW#8b

 Build a circuit to read in an 8-bit KEY

using a two-line handshake; the circuit is

a passive consumer.

 The circuit should search an 18kx16

RAM, counting the number of words that

match KEY.

 Assume the RAM is preloaded with data

and it can respond to a read request with

valid data within one clock

31

1. while(1) {

2. while(REQ == 0);

3. KEY = data;

4. ACK = 1;

5. while(REQ == 1);

6. ACK = 0;

7. match = 0;

8. for(i=0; i<1024; i++) {

9. MBR = RAM[i];

10. if (MBR == KEY) {

11. match=match+1;

12. } // end if

13. } // end for

14. } // end while

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

 For next class

 Do HW8b

 Prep for lab2

Read the assignment

Copy your lab1 files and given lab2 files, and

build a lab2 project in vivado

GateCheck 1 due EOC next lesson

 Rest of Class today?

 Work on HW8b?

 Intro to Lab#2

 GR Review?

 HW8?

329 February 2021

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Homework #8

33

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

HW8 solution?

349 February 2021

